(II)
 The University of Georgia

Mathematics Education
 EMAT 4680/6680 Mathematics with Technology Jim Wilson, Instructor

Additional Exploration using Excel

Jaime Maxey

Use the following exploration to generate a function to predict observed data.

Age of Tree	100s Board Feet
20	1
40	6
60	
80	33
100	56
120	88
140	
160	182
180	
200	320

This data is from the lumber industry, giving the approximate number of board feet of lumber per tree in a forest of a given age. What function will fit the data? Predict the harvest for ages other than those given.

Below is a scatterplot of the data:

Below is a scatter plot of the data with four different lines of best fit. The first being linear, the second exponential the third polynomial, and the fourth power. Each equation for each line of best fit is included on the graph along with the coefficient of determination.

The fourth line of best fit is the most appropriate line for our data set. 99.99% of the variation in our response variable (100's of Board Feet) is explained by the fitted regression equation $\hat{y}=0.0006 x^{2.4926}$.

We can use this equation in order to make predictions as shown in the table below.

Age of Tree	100 's of Board Feet	$\hat{y}=0.006 x^{2.4926}$
20	1	1.05
40	6	5.91
60		16.23
80	53	33.25
100	88	57.99
120		91.35
140	182	134.15
160		187.13
180	320	250.98
200		326.36

From the equation of the line of best fit we can predict that a tree that is 60 years old in this particular forest will contain 16.23 100's of board feet.

